Thursday, September 11, 2008

Lecture 3

Lecture 3


 

  • MAC
    • Acronym: Medium Access Control
  • To prevent collisions the host computer would poll each terminal based on its MAC address and at that point they would communicate
  • Frame
    • Kept information on where it is going
    • And where its source is
  • Modification 2
    • Use multiplexing to
      • Transmit multiple messages simultaneously and
      • To detect communication errors
    • Multiplexers provide a second approach for sharing the communication line
    • CRC was used to detect errors
    • At this point every frame had a header, CRC and data
    • CRC
      • Acronym: Cyclic Redundancy Check

Second Generation of Networks


 

  • the second generation of networks were Computer to computer networks
    • as cost of computers dropped, dumb terminals were replaced by PC's
    • interconnecting computers were required to support
      • file transferring
      • remote telnet to allow remote application
      • parallel processing to execute a single program over multiple computers
  • ARPANET was the first WAN connecting universities
    • Operated using packet switching
    • Each message is converted into several smaller packets
    • At the destination computer the packets are combined into the original message from the host
    • Acronym:
      Advanced Research Projects Agency Net
    • Missing packets / corrupt packets became a concern
  • Internet is the interconnection of many networks
    • Resulted in compatibility issues with speeds of networks and bandwidth
    • Standards needed to be created to connect the networks seamlessly


 

Comparison of Switching Techniques


 

  • Circuit switching (designed for phone networks)
    • End to end path is established between transmitter and receiver
    • Complete blocks transmitted and once complete, circuit is terminated
    • Transmitter and Receiver were inaccessible for the duration of the connection
    • Definition Trunk: a major line connection in a telephone network
  • Message switching (designed for telegraphic networks)
    • No physical path is established between Transmitter and Receiver
    • Connection is established between the Transmitter and first switching office (router)
    • Entire block of data is transmitted to the switching office
    • Block is forwarded one hop at a time
    • No limit on block size, switching stations inaccessible for duration of transfer
  • Packet switching (used in internet)
    • A tight limit is placed on maximum block size
    • Data is broken in different sub-blocks and each sub-block is transmitted one hop at a time, on after the other
    • Message switching and packet switching are very alike
    • Packet switching is quicker because the original data is broken into packets and the length of time the message takes to send everything at once is broken into fragments

No comments: